0x1949 Team - FAZEMRX - MANAGER
Edit File: mshyperv.h
/* SPDX-License-Identifier: GPL-2.0 */ /* * Linux-specific definitions for managing interactions with Microsoft's * Hyper-V hypervisor. The definitions in this file are architecture * independent. See arch/<arch>/include/asm/mshyperv.h for definitions * that are specific to architecture <arch>. * * Definitions that are specified in the Hyper-V Top Level Functional * Spec (TLFS) should not go in this file, but should instead go in * hyperv-tlfs.h. * * Copyright (C) 2019, Microsoft, Inc. * * Author : Michael Kelley <mikelley@microsoft.com> */ #ifndef _ASM_GENERIC_MSHYPERV_H #define _ASM_GENERIC_MSHYPERV_H #include <linux/types.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/nmi.h> #include <asm/ptrace.h> #include <asm/hyperv-tlfs.h> struct ms_hyperv_info { u32 features; u32 priv_high; u32 misc_features; u32 hints; u32 nested_features; u32 max_vp_index; u32 max_lp_index; u32 isolation_config_a; u32 isolation_config_b; }; extern struct ms_hyperv_info ms_hyperv; extern void __percpu **hyperv_pcpu_input_arg; extern void __percpu **hyperv_pcpu_output_arg; extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr); extern u64 hv_do_fast_hypercall8(u16 control, u64 input8); /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */ static inline int hv_result(u64 status) { return status & HV_HYPERCALL_RESULT_MASK; } static inline bool hv_result_success(u64 status) { return hv_result(status) == HV_STATUS_SUCCESS; } static inline unsigned int hv_repcomp(u64 status) { /* Bits [43:32] of status have 'Reps completed' data. */ return (status & HV_HYPERCALL_REP_COMP_MASK) >> HV_HYPERCALL_REP_COMP_OFFSET; } /* * Rep hypercalls. Callers of this functions are supposed to ensure that * rep_count and varhead_size comply with Hyper-V hypercall definition. */ static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, void *input, void *output) { u64 control = code; u64 status; u16 rep_comp; control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; do { status = hv_do_hypercall(control, input, output); if (!hv_result_success(status)) return status; rep_comp = hv_repcomp(status); control &= ~HV_HYPERCALL_REP_START_MASK; control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; touch_nmi_watchdog(); } while (rep_comp < rep_count); return status; } /* Generate the guest OS identifier as described in the Hyper-V TLFS */ static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, __u64 d_info2) { __u64 guest_id = 0; guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); guest_id |= (d_info1 << 48); guest_id |= (kernel_version << 16); guest_id |= d_info2; return guest_id; } /* Free the message slot and signal end-of-message if required */ static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) { /* * On crash we're reading some other CPU's message page and we need * to be careful: this other CPU may already had cleared the header * and the host may already had delivered some other message there. * In case we blindly write msg->header.message_type we're going * to lose it. We can still lose a message of the same type but * we count on the fact that there can only be one * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages * on crash. */ if (cmpxchg(&msg->header.message_type, old_msg_type, HVMSG_NONE) != old_msg_type) return; /* * The cmxchg() above does an implicit memory barrier to * ensure the write to MessageType (ie set to * HVMSG_NONE) happens before we read the * MessagePending and EOMing. Otherwise, the EOMing * will not deliver any more messages since there is * no empty slot */ if (msg->header.message_flags.msg_pending) { /* * This will cause message queue rescan to * possibly deliver another msg from the * hypervisor */ hv_set_register(HV_REGISTER_EOM, 0); } } void hv_setup_vmbus_handler(void (*handler)(void)); void hv_remove_vmbus_handler(void); void hv_setup_stimer0_handler(void (*handler)(void)); void hv_remove_stimer0_handler(void); void hv_setup_kexec_handler(void (*handler)(void)); void hv_remove_kexec_handler(void); void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); void hv_remove_crash_handler(void); extern int vmbus_interrupt; extern int vmbus_irq; extern bool hv_root_partition; #if IS_ENABLED(CONFIG_HYPERV) /* * Hypervisor's notion of virtual processor ID is different from * Linux' notion of CPU ID. This information can only be retrieved * in the context of the calling CPU. Setup a map for easy access * to this information. */ extern u32 *hv_vp_index; extern u32 hv_max_vp_index; extern u64 (*hv_read_reference_counter)(void); /* Sentinel value for an uninitialized entry in hv_vp_index array */ #define VP_INVAL U32_MAX int __init hv_common_init(void); void __init hv_common_free(void); int hv_common_cpu_init(unsigned int cpu); int hv_common_cpu_die(unsigned int cpu); void *hv_alloc_hyperv_page(void); void *hv_alloc_hyperv_zeroed_page(void); void hv_free_hyperv_page(unsigned long addr); /** * hv_cpu_number_to_vp_number() - Map CPU to VP. * @cpu_number: CPU number in Linux terms * * This function returns the mapping between the Linux processor * number and the hypervisor's virtual processor number, useful * in making hypercalls and such that talk about specific * processors. * * Return: Virtual processor number in Hyper-V terms */ static inline int hv_cpu_number_to_vp_number(int cpu_number) { return hv_vp_index[cpu_number]; } static inline int __cpumask_to_vpset(struct hv_vpset *vpset, const struct cpumask *cpus, bool exclude_self) { int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; int this_cpu = smp_processor_id(); /* valid_bank_mask can represent up to 64 banks */ if (hv_max_vp_index / 64 >= 64) return 0; /* * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex * structs are not cleared between calls, we risk flushing unneeded * vCPUs otherwise. */ for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) vpset->bank_contents[vcpu_bank] = 0; /* * Some banks may end up being empty but this is acceptable. */ for_each_cpu(cpu, cpus) { if (exclude_self && cpu == this_cpu) continue; vcpu = hv_cpu_number_to_vp_number(cpu); if (vcpu == VP_INVAL) return -1; vcpu_bank = vcpu / 64; vcpu_offset = vcpu % 64; __set_bit(vcpu_offset, (unsigned long *) &vpset->bank_contents[vcpu_bank]); if (vcpu_bank >= nr_bank) nr_bank = vcpu_bank + 1; } vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); return nr_bank; } static inline int cpumask_to_vpset(struct hv_vpset *vpset, const struct cpumask *cpus) { return __cpumask_to_vpset(vpset, cpus, false); } static inline int cpumask_to_vpset_noself(struct hv_vpset *vpset, const struct cpumask *cpus) { WARN_ON_ONCE(preemptible()); return __cpumask_to_vpset(vpset, cpus, true); } void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die); bool hv_is_hyperv_initialized(void); bool hv_is_hibernation_supported(void); enum hv_isolation_type hv_get_isolation_type(void); bool hv_is_isolation_supported(void); void hyperv_cleanup(void); bool hv_query_ext_cap(u64 cap_query); #else /* CONFIG_HYPERV */ static inline bool hv_is_hyperv_initialized(void) { return false; } static inline bool hv_is_hibernation_supported(void) { return false; } static inline void hyperv_cleanup(void) {} #endif /* CONFIG_HYPERV */ #endif