0x1949 Team - FAZEMRX - MANAGER
Edit File: memblock.h
/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_MEMBLOCK_H #define _LINUX_MEMBLOCK_H #ifdef __KERNEL__ /* * Logical memory blocks. * * Copyright (C) 2001 Peter Bergner, IBM Corp. */ #include <linux/init.h> #include <linux/mm.h> #include <asm/dma.h> extern unsigned long max_low_pfn; extern unsigned long min_low_pfn; /* * highest page */ extern unsigned long max_pfn; /* * highest possible page */ extern unsigned long long max_possible_pfn; /** * enum memblock_flags - definition of memory region attributes * @MEMBLOCK_NONE: no special request * @MEMBLOCK_HOTPLUG: hotpluggable region * @MEMBLOCK_MIRROR: mirrored region * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as * reserved in the memory map; refer to memblock_mark_nomap() description * for further details */ enum memblock_flags { MEMBLOCK_NONE = 0x0, /* No special request */ MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */ MEMBLOCK_MIRROR = 0x2, /* mirrored region */ MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */ }; /** * struct memblock_region - represents a memory region * @base: base address of the region * @size: size of the region * @flags: memory region attributes * @nid: NUMA node id */ struct memblock_region { phys_addr_t base; phys_addr_t size; enum memblock_flags flags; #ifdef CONFIG_NUMA int nid; #endif }; /** * struct memblock_type - collection of memory regions of certain type * @cnt: number of regions * @max: size of the allocated array * @total_size: size of all regions * @regions: array of regions * @name: the memory type symbolic name */ struct memblock_type { unsigned long cnt; unsigned long max; phys_addr_t total_size; struct memblock_region *regions; char *name; }; /** * struct memblock - memblock allocator metadata * @bottom_up: is bottom up direction? * @current_limit: physical address of the current allocation limit * @memory: usable memory regions * @reserved: reserved memory regions */ struct memblock { bool bottom_up; /* is bottom up direction? */ phys_addr_t current_limit; struct memblock_type memory; struct memblock_type reserved; }; extern struct memblock memblock; #ifndef CONFIG_ARCH_KEEP_MEMBLOCK #define __init_memblock __meminit #define __initdata_memblock __meminitdata void memblock_discard(void); #else #define __init_memblock #define __initdata_memblock static inline void memblock_discard(void) {} #endif void memblock_allow_resize(void); int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid, enum memblock_flags flags); int memblock_add(phys_addr_t base, phys_addr_t size); int memblock_remove(phys_addr_t base, phys_addr_t size); int memblock_free(phys_addr_t base, phys_addr_t size); int memblock_reserve(phys_addr_t base, phys_addr_t size); #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP int memblock_physmem_add(phys_addr_t base, phys_addr_t size); #endif void memblock_trim_memory(phys_addr_t align); bool memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size); int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size); int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size); int memblock_mark_mirror(phys_addr_t base, phys_addr_t size); int memblock_mark_nomap(phys_addr_t base, phys_addr_t size); int memblock_clear_nomap(phys_addr_t base, phys_addr_t size); void memblock_free_all(void); void memblock_free_ptr(void *ptr, size_t size); void reset_node_managed_pages(pg_data_t *pgdat); void reset_all_zones_managed_pages(void); /* Low level functions */ void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, struct memblock_type *type_a, struct memblock_type *type_b, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid); void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags, struct memblock_type *type_a, struct memblock_type *type_b, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid); void __memblock_free_late(phys_addr_t base, phys_addr_t size); #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP static inline void __next_physmem_range(u64 *idx, struct memblock_type *type, phys_addr_t *out_start, phys_addr_t *out_end) { extern struct memblock_type physmem; __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type, out_start, out_end, NULL); } /** * for_each_physmem_range - iterate through physmem areas not included in type. * @i: u64 used as loop variable * @type: ptr to memblock_type which excludes from the iteration, can be %NULL * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL */ #define for_each_physmem_range(i, type, p_start, p_end) \ for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \ i != (u64)ULLONG_MAX; \ __next_physmem_range(&i, type, p_start, p_end)) #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */ /** * __for_each_mem_range - iterate through memblock areas from type_a and not * included in type_b. Or just type_a if type_b is NULL. * @i: u64 used as loop variable * @type_a: ptr to memblock_type to iterate * @type_b: ptr to memblock_type which excludes from the iteration * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL */ #define __for_each_mem_range(i, type_a, type_b, nid, flags, \ p_start, p_end, p_nid) \ for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \ p_start, p_end, p_nid); \ i != (u64)ULLONG_MAX; \ __next_mem_range(&i, nid, flags, type_a, type_b, \ p_start, p_end, p_nid)) /** * __for_each_mem_range_rev - reverse iterate through memblock areas from * type_a and not included in type_b. Or just type_a if type_b is NULL. * @i: u64 used as loop variable * @type_a: ptr to memblock_type to iterate * @type_b: ptr to memblock_type which excludes from the iteration * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL */ #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \ p_start, p_end, p_nid) \ for (i = (u64)ULLONG_MAX, \ __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ p_start, p_end, p_nid); \ i != (u64)ULLONG_MAX; \ __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ p_start, p_end, p_nid)) /** * for_each_mem_range - iterate through memory areas. * @i: u64 used as loop variable * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL */ #define for_each_mem_range(i, p_start, p_end) \ __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \ MEMBLOCK_HOTPLUG, p_start, p_end, NULL) /** * for_each_mem_range_rev - reverse iterate through memblock areas from * type_a and not included in type_b. Or just type_a if type_b is NULL. * @i: u64 used as loop variable * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL */ #define for_each_mem_range_rev(i, p_start, p_end) \ __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \ MEMBLOCK_HOTPLUG, p_start, p_end, NULL) /** * for_each_reserved_mem_range - iterate over all reserved memblock areas * @i: u64 used as loop variable * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * * Walks over reserved areas of memblock. Available as soon as memblock * is initialized. */ #define for_each_reserved_mem_range(i, p_start, p_end) \ __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \ MEMBLOCK_NONE, p_start, p_end, NULL) static inline bool memblock_is_hotpluggable(struct memblock_region *m) { return m->flags & MEMBLOCK_HOTPLUG; } static inline bool memblock_is_mirror(struct memblock_region *m) { return m->flags & MEMBLOCK_MIRROR; } static inline bool memblock_is_nomap(struct memblock_region *m) { return m->flags & MEMBLOCK_NOMAP; } int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn, unsigned long *end_pfn); void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, unsigned long *out_end_pfn, int *out_nid); /** * for_each_mem_pfn_range - early memory pfn range iterator * @i: an integer used as loop variable * @nid: node selector, %MAX_NUMNODES for all nodes * @p_start: ptr to ulong for start pfn of the range, can be %NULL * @p_end: ptr to ulong for end pfn of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL * * Walks over configured memory ranges. */ #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \ for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \ i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid)) #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, unsigned long *out_spfn, unsigned long *out_epfn); /** * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free * memblock areas * @i: u64 used as loop variable * @zone: zone in which all of the memory blocks reside * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * * Walks over free (memory && !reserved) areas of memblock in a specific * zone. Available once memblock and an empty zone is initialized. The main * assumption is that the zone start, end, and pgdat have been associated. * This way we can use the zone to determine NUMA node, and if a given part * of the memblock is valid for the zone. */ #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \ for (i = 0, \ __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \ i != U64_MAX; \ __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) /** * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific * free memblock areas from a given point * @i: u64 used as loop variable * @zone: zone in which all of the memory blocks reside * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * * Walks over free (memory && !reserved) areas of memblock in a specific * zone, continuing from current position. Available as soon as memblock is * initialized. */ #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \ for (; i != U64_MAX; \ __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask); #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ /** * for_each_free_mem_range - iterate through free memblock areas * @i: u64 used as loop variable * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL * * Walks over free (memory && !reserved) areas of memblock. Available as * soon as memblock is initialized. */ #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \ __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \ nid, flags, p_start, p_end, p_nid) /** * for_each_free_mem_range_reverse - rev-iterate through free memblock areas * @i: u64 used as loop variable * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL * * Walks over free (memory && !reserved) areas of memblock in reverse * order. Available as soon as memblock is initialized. */ #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \ p_nid) \ __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \ nid, flags, p_start, p_end, p_nid) int memblock_set_node(phys_addr_t base, phys_addr_t size, struct memblock_type *type, int nid); #ifdef CONFIG_NUMA static inline void memblock_set_region_node(struct memblock_region *r, int nid) { r->nid = nid; } static inline int memblock_get_region_node(const struct memblock_region *r) { return r->nid; } #else static inline void memblock_set_region_node(struct memblock_region *r, int nid) { } static inline int memblock_get_region_node(const struct memblock_region *r) { return 0; } #endif /* CONFIG_NUMA */ /* Flags for memblock allocation APIs */ #define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0) #define MEMBLOCK_ALLOC_ACCESSIBLE 0 #define MEMBLOCK_ALLOC_KASAN 1 /* We are using top down, so it is safe to use 0 here */ #define MEMBLOCK_LOW_LIMIT 0 #ifndef ARCH_LOW_ADDRESS_LIMIT #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL #endif phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end); phys_addr_t memblock_alloc_range_nid(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, int nid, bool exact_nid); phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid); static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size, phys_addr_t align) { return memblock_phys_alloc_range(size, align, 0, MEMBLOCK_ALLOC_ACCESSIBLE); } void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid); void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid); void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid); static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align) { return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); } static inline void *memblock_alloc_raw(phys_addr_t size, phys_addr_t align) { return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); } static inline void *memblock_alloc_from(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr) { return memblock_alloc_try_nid(size, align, min_addr, MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); } static inline void *memblock_alloc_low(phys_addr_t size, phys_addr_t align) { return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE); } static inline void *memblock_alloc_node(phys_addr_t size, phys_addr_t align, int nid) { return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ACCESSIBLE, nid); } static inline void memblock_free_early(phys_addr_t base, phys_addr_t size) { memblock_free(base, size); } static inline void memblock_free_early_nid(phys_addr_t base, phys_addr_t size, int nid) { memblock_free(base, size); } static inline void memblock_free_late(phys_addr_t base, phys_addr_t size) { __memblock_free_late(base, size); } /* * Set the allocation direction to bottom-up or top-down. */ static inline __init_memblock void memblock_set_bottom_up(bool enable) { memblock.bottom_up = enable; } /* * Check if the allocation direction is bottom-up or not. * if this is true, that said, memblock will allocate memory * in bottom-up direction. */ static inline __init_memblock bool memblock_bottom_up(void) { return memblock.bottom_up; } phys_addr_t memblock_phys_mem_size(void); phys_addr_t memblock_reserved_size(void); phys_addr_t memblock_start_of_DRAM(void); phys_addr_t memblock_end_of_DRAM(void); void memblock_enforce_memory_limit(phys_addr_t memory_limit); void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size); void memblock_mem_limit_remove_map(phys_addr_t limit); bool memblock_is_memory(phys_addr_t addr); bool memblock_is_map_memory(phys_addr_t addr); bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size); bool memblock_is_reserved(phys_addr_t addr); bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size); void memblock_dump_all(void); /** * memblock_set_current_limit - Set the current allocation limit to allow * limiting allocations to what is currently * accessible during boot * @limit: New limit value (physical address) */ void memblock_set_current_limit(phys_addr_t limit); phys_addr_t memblock_get_current_limit(void); /* * pfn conversion functions * * While the memory MEMBLOCKs should always be page aligned, the reserved * MEMBLOCKs may not be. This accessor attempt to provide a very clear * idea of what they return for such non aligned MEMBLOCKs. */ /** * memblock_region_memory_base_pfn - get the lowest pfn of the memory region * @reg: memblock_region structure * * Return: the lowest pfn intersecting with the memory region */ static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg) { return PFN_UP(reg->base); } /** * memblock_region_memory_end_pfn - get the end pfn of the memory region * @reg: memblock_region structure * * Return: the end_pfn of the reserved region */ static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg) { return PFN_DOWN(reg->base + reg->size); } /** * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region * @reg: memblock_region structure * * Return: the lowest pfn intersecting with the reserved region */ static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg) { return PFN_DOWN(reg->base); } /** * memblock_region_reserved_end_pfn - get the end pfn of the reserved region * @reg: memblock_region structure * * Return: the end_pfn of the reserved region */ static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg) { return PFN_UP(reg->base + reg->size); } /** * for_each_mem_region - itereate over memory regions * @region: loop variable */ #define for_each_mem_region(region) \ for (region = memblock.memory.regions; \ region < (memblock.memory.regions + memblock.memory.cnt); \ region++) /** * for_each_reserved_mem_region - itereate over reserved memory regions * @region: loop variable */ #define for_each_reserved_mem_region(region) \ for (region = memblock.reserved.regions; \ region < (memblock.reserved.regions + memblock.reserved.cnt); \ region++) extern void *alloc_large_system_hash(const char *tablename, unsigned long bucketsize, unsigned long numentries, int scale, int flags, unsigned int *_hash_shift, unsigned int *_hash_mask, unsigned long low_limit, unsigned long high_limit); #define HASH_EARLY 0x00000001 /* Allocating during early boot? */ #define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min * shift passed via *_hash_shift */ #define HASH_ZERO 0x00000004 /* Zero allocated hash table */ /* Only NUMA needs hash distribution. 64bit NUMA architectures have * sufficient vmalloc space. */ #ifdef CONFIG_NUMA #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT) extern int hashdist; /* Distribute hashes across NUMA nodes? */ #else #define hashdist (0) #endif #ifdef CONFIG_MEMTEST extern void early_memtest(phys_addr_t start, phys_addr_t end); #else static inline void early_memtest(phys_addr_t start, phys_addr_t end) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_MEMBLOCK_H */